

THE MOLECULAR FOUNDRY

A DOE User Facility
for Nanoscale Science Research
at Lawrence Berkeley National Lab

Jim De Yoreo, Deputy Director for Research

Nanoscience: Multidisciplinary research with multiple applications

No one research group can do it all!

Mission of the Molecular Foundry

<u>Purpose</u>

Provide nanoscience capabilities to researchers from any discipline, and any institution, to come, free of charge, to:

- use state-of-the-art instruments
- learn leading-edge techniques
- collaborate with experts in a wide range of nanoscience disciplines

<u>Impact</u>

....so that they may more effectively pursue their own research interests.

Six facilities, one team

Nanostructures

A. Paul Alivisatos

Biological Nanostructures

Carolyn Bertozzi

Organic and Macro-molecular Synthesis

Jean Fréchet

Nanofabrication

Jeffrey Bokor

Imaging and Manipulation

Miquel Salmeron

Theory of Nanostructures

Steven G. Louie

PRESENT AND PROJECTED STAFF

- Director and Deputy Directors
- 6 Scientific Directors
- 29 PhD Scientists (Staff Scientists and Post docs)
- 12 Technical staff (Res. Assoc. and Eng. Assoc.)
- 5 Other (User Program, Outreach, EH&S, IT, Admin.)
- Present total = 54
- ~ 6 positions to be filled
- Total staff projected at steady-state = ~ 60
- (~ 6 scientists per Facility working with Users)

Users come from around the world

- 459 proposals received, 245 proposals accepted (~ 600 "Users")
- Academia, Industry, National Labs
- 219 domestic, 26 international
- 28 states and 11 foreign countries represented

Types of Foundry User Projects

- Obtain nanostructures
- Develop new nanoscale materials/devices and methods
- Learn to use nanoscale materials and methods
- Learn to replicate new instruments/techniques
- Pursue long term collaborations
- Materials only/Instrument only
- Strategic User Partnerships (i.e.,Intel)

NSRCs must also have their own internal research program

Purpose

Advance the field of nanoscience through a vibrant program of leading edge research

Impact

...to provide rapid availability of most advance capabilities in nanoscience to Users

Four research themes integrate the Foundry's six facilities

Biological Nanostructures Facility

Prof. Carolyn Bertozzi, Scientific Director

Expertise:

- New nanomaterials inspired by nature
- Nanotechnologies for biological research
- Building nanomaterials from biological components

Current capabilities:

- Mammalian, plant, microbial cell culture
- Protein engineering
- RNA preparation
- Bioconjugation chemistry
- Cell immortalization via telomerase expression
- Phage display for nanocrystal-binding proteins/peptides
- Cellular components/products for bio/inorganic assemblies
- Genetic engineering of cell lines for materials integration

Protein subunits as building blocks

Hcp1 protein forms a ring-shaped hexamer

6 cysteines were introduced into each ring face

Rings self-assemble into covalent nanotubes

- Drug delivery
- Ion selection
- Structural scaffolds

Can rings be engineered to self- assemble into tubes?

Foundry User: Joe Mougous

Foundry Staff: Ron Zuckerman

"Single digit" nano

Ballister et al., PNAS (2008)

Theory of Nanostructures Facility

Prof. Steven Louie, Scientific Director

Expertise:

- Electronic structure of nanomaterials and molecular junctions
- Spectroscopic prediction and interpretation
- Soft matter assembly and dynamics

Current capabilities:

- First-principles density-functional theory
- Classical & ab initio molecular dynamics
- Excited-state properties with the GW/Bethe-Salpeter equation approach
- Electron transport at finite bias with a first-principles scattering-state method
- Statistical mechanical approaches

Carbon nanotube heterojunctions

SEM image of (18,13)-(21,9) junction

Stability diagram (dl/dV)

Why do SWCNT heterojunctions show quantum dot-like behavior?

Foundry User: Jim Hone, Columbia Univ.

Model of SWCNT heterojunction

Prediction of localized states at interface

Defects that accommodate junction led to localized states

Foundry Staff: J. Neaton and J.Bhattacharjee

Interfaces in nanomterials

Imaging and Manipulation Facility

Prof. Miquel Salmeron, Scientific Director

Expertise:

- Surface science
- In situ imaging and spectroscopy
- Molecular interactions

Current capabilities:

- Electron microscopy
 - 200 kV Field Emission TEM, Analytical FE-SEM, Insitu SEM, SPM and TEM
- Probe microscopy
 - Commercial multimode ambient SPM systems (air, liquids, controlled humidity, contact / non-contact)
 - Foundry-built ultra-sensitive SPM for chemical interaction work in liquids
 - UHV RT-AFM for contact imaging and electrical characterization
- Optical spectroscopy
 - Tunable ultrafast laser system (Ti:SAF / OPO), super-continuum white source, CW sources
 - Photon counters, low noise spectrometers, confocal microscope and cryostat, general optics
- Surface Analysis
 - Scanning Auger and non-monochromatic XPS
- Support
 - Optical microscopy, sample prep and chem lab

High resolution *in situ* imaging of nanocrystal growth

Surface morphology

How do acidic peptides modify growth of electronegative face?

Develop atomic resolution imaging

Peptides adsorb as highly charged clusters

Working with NCEM to develop fluid cells for *in situ* TEM studies of nucleation and assembly

- Closed system
- Electrochemical
 temperature
 control (0-70°C)

Growth of silicone-based colloids

~25s intervals through 1µm cell

Diffusion of 4nm Au nanoparticles

Examples illustrate ability to follow dynamics of assembly and growth

In situ TEM will enable Users to probe nanomaterials assembly and reactivity

Soft matter and organic-inorganic interfaces

- Assembly of macromolecular complexes (Zuckerman)
 - Protein nanotubes, Nanolipid disks
- Bio-templated assembly (DeYoreo)
 - Silicateins, Protein cages, Peptides
- Supramolecular structures (Liu)
 - Block co-polymer scaffolds

Inorganic nanostructures

- Catalysis at nanoparticle surfaces (Aloni, Salmeron)
- Photovoltaics, Solar-to-fuel catalytic structures
- Nanowires (Mokari)
 - Solution-liquid-solid growth

